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Abstract—This report describes the development of a Dynamic 

Time Wrapping based speech recognition module.  The 
recognition module roughly consists of four separate modules; 
preprocessing, feature extraction, clustering and classification. 
The preprocessing module prepares the speech signals for further 
analysis by removing pauses and increasing the signal-to-noise 
ratio. After preprocessing the features of the signal will be 
extracted using a Mel-frequency cepstrum approach, these 
features are then clustered using a k-means algorithm to produce 
relevant centroids. In the last module, classification, the Dynamic 
Time Wrapping method is used to recognize the speech signal. 
The recognizer’s performance ranges from 35% to 100% heavily 
depending on the algorithm used and the training dataset. The 
module is developed in MATLAB and is easy to use due to the 
GUI (Graphical User Interface).  
 

Index Terms—Classification, clustering, dynamic time 
wrapping, feature extraction, mel-frequency cepstrum, speech 
recognizer. 
 

I. INTRODUCTION 
peech recognition has become more and more applied in 
the recent years. Phones, tablets, navigation systems, 
gaming platforms and cars are a few examples of devices 

which can include speech recognition. Since this is a hands 
free way to communicate with a device it is not only 
convenient, but it can also contribute to the safety of its user. 
For example, while driving a car, switching the radio or the 
navigator’s destination will distract the driver. However, when 
a speech recognition module is implemented to deal with these 
actions the driver barely loses focus. 
 Besides the fact that speech recognition is hands free, it is 
also often a faster and easier way of communication with a 
device. For example, when calling a friend with your phone 
pronouncing his name is a lot faster than looking for his 
contact information or typing his number. When using speech 
recognition for the applications mentioned above it is very 
important that the recognizer is reliable; when the program 
fails to recognize the speech correctly too often the user will 
lose interest in the speech recognition feature. Current popular 
speech recognizers are for example Apple’s SIRI for the 
iPhones and Google’s Voice Search for the Google Chrome 
browser. 
 The goal of this research is to gain knowledge on speech 
recognition and to apply this knowledge in order to build a 

 
 

reliable isolated word1 speech recognizer. This isolated word 
recognizer will be developed to serve as a remote controller 
for a device (e.g. a robot) using single worded commands like 
start and stop. During this project three scripts of the unofficial 
MATLAB toolbox VOICEBOX [1] were used; 𝑚𝑒𝑙𝑐𝑒𝑝𝑠𝑡.𝑚, 
𝑘𝑚𝑒𝑎𝑛𝑠.𝑚 and 𝑑𝑖𝑠𝑡𝑒𝑢𝑠𝑞.𝑚 to build the speech recognizer. 
To develop a speech recognizer for this purpose some unique 
design decisions had to be made. Since the recognizer only has 
to recognize a given amount of isolated words, training on 
these specific words will be the most effective approach. 
Besides that, the recognizer should be able to operate in real 
time; the calculation speed of the program shouldn’t be too 
long. Keeping those requirements in mind, the following 
decisions were made during the development process, which 
led to the final result; 

• The implemented preprocessing algorithm has been 
adjusted to the specific hardware and situation of the 
developer. 

• Only the first, and most important, twelve MFCC, 
were used for recognizing the speech, to lower the 
calculation speed of the program. 

• A weight vector has been applied to emphasize 
certain features (e.g. boost the important features of 
specific speech and lower the features containing a 
low frequency noise). 

• Vector Quantization was applied (𝑘-means) to reduce 
the amount of feature vectors and thus the calculation 
speed. 

• Two different classification algorithms were 
implemented to perform the recognition. 

• The recognizer is has been built with a GUI 
(Graphical User Interface), making it easier to 
recognize speech and create a training set consisting 
of your own speech. 

 A graphical overview of the speech recognizer is displayed 
in appendix A, and a guide on how to use the model is 
presented in appendix B. 
 
The outline of this report is as follows; 
Chapter 2: Preprocessing 
 A crucial step to building a proper functioning speech 
recognizer is preprocessing the speech signals. Without decent 

 
1 An isolated word speech recognizer is only capable of recognizing single, 

isolated, words. 
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preprocessed speech the recognizer is doomed to fail. Noise 
reduction and voice detection are the main topics discussed in 
this chapter. 
Chapter 3: Feature Extraction 
 To recognize speech certain features must be compared. For 
the extraction of these features the Mel-frequency cepstrum 
algorithm is used. The extraction using this algorithm is 
discussed in this chapter. 
Chapter 4: Vector Quantization 
 The amount of feature vectors increases drastically when 
using a larger speech dataset. Comparing all these vectors is 
too time-consuming, so the dataset has to be compressed. This 
chapter describes this compressing using a 𝑘-means clustering 
method. 
Chapter 5: Classification 
 After building a dataset consisting of a reduced number of 
feature vectors, these vectors can be compared to the feature 
vectors of the input speech using the Dynamic Time Wrapping 
algorithm. 
Chapter 6: Results 
 The results will be discussed in this chapter, where two 
situations are distinguished; All the speech is recorded by the 
same speaker and the training set is recorded by four different 
speakers while the input speech is recorded by a fifth.  
Chapter 7: Conclusions 
 In this final chapter the conclusions are presented. 
Furthermore the recommendations on further use of the 
module are presented in this chapter. 

II. PREPROCESSING 
 In this chapter the preprocessing of speech signals will be 
discussed. Preprocessing is a crucial part of the speech 
recognition module, it involves improving the signal-to-noise 
ratio and detection of voice. After preprocessing a raw speech 
signal, there should remain a signal with a fair signal-to-noise 
ratio and without any pauses. After preprocessing the speech 
features can be extracted. If the preprocessing is performed 
incorrect or insufficient the speech features will not 
correspond to the speech and the recognition will most likely 
fail.  

A. Pre-emphasis filtering 
 The first step performed to preprocess a raw speech signal 
is applying a pre-emphasis filter. This filter will improve the 
signal-to-noise ratio by boosting the higher frequencies of the 
signal with respect to the lower frequencies [2], removing the 
adverse effects caused by recording the speech. A typical pre-
emphasis filter is the high pass filter shown below: 
 

 𝐻(𝓏) = 1 − 𝑎𝓏−1 (2.1) 
 

 Typical values for 𝑎 are from 0.9 to 1.0, to find the best 
possible 𝑎 different values have been used, and 𝑎 = 0.98 
proved to provide the best results. Giving the following pre-
emphasis filter: 
 

 𝐻(𝓏) = 1 − 0.98𝓏−1 (2.2) 
 

 The magnitude and unwrapped phase of this filter are 
shown below, in Figure 2.1. 

 
Fig. 2.1: Visual representation of the pre-emphasis filter 

 Applying this filter on a raw speech signal will provide a 
‘smoother’ speech signal, listening to both signals one can 
clearly observe that the filtered signal includes less noise. In 
Figures 2.2 and 2.3 a raw speech signal and its filtered version 
are shown in the time domain.  

                                                                                                           
Fig. 2.2: Raw speech signal             Fig. 2.3: Filtered speech signal 

 

B. Voice activation detection 
 The next step in the preprocessing is to detect speech, and 
separate it from pauses. After distinguishing the speech from 
the pauses, a new signal without these pauses can be 
constructed. A speech signal roughly consist of three parts; 
voiced/unvoiced/silence where the voiced part is desired, 
while the unvoiced (noisy) and silence part must be removed. 
Unlike unvoiced and silence parts, the voiced part can be 
considered periodic over short-time periods due to the periodic 
vibration of vocal cords [3]. Dividing the speech into 𝑀 
blocks of length 𝐿 (20 𝑚𝑠) allows the speech to be stationary 
and periodic in each block (Figure 2.4). 
 The most important features for determining the voiced part 
are the short-term energy and the zero-crossing rate [4]. 
Voiced sound consists of a large amount of energy compared 
to unvoiced sound, and silence has no energy. Thus the short-
term energy will increase when speech is present and is a 
useful tool to detect speech. 
 

 𝑆𝑇𝐸 = � 𝑠(𝑛)2
𝑀

𝑛=𝑚−𝐿+1

 (2.3) 
 

 Since the only difference between the short-term energy and 
the short-term power is a scaling factor of 1/𝐿 the short-term 
power will also increase when speech is present. 
 

 𝑆𝑇𝑃 =
1
𝐿

� 𝑠(𝑛)2
𝑀

𝑛=𝑚−𝐿+1

 (2.4) 
 

 The zero-crossing rate is the rate at which the speech signal 
crosses the 𝑥 = 0 axis. The short-term zero-crossing rate can 
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be calculated for every block 𝑀, and this rate appears to be 
larger during the unvoiced part. 
 

 𝑍𝐶𝑅 =
1
𝐿

� �
𝑠𝑔𝑛�𝑠(𝑛)� − 𝑠𝑔𝑛(𝑠(𝑛 − 1))

2 �
𝑀

𝑛=𝑚−𝐿+1

 (2.5) 
 

 Combining both the short-term power and the short-term 
zero-crossing rate will provide the following formula, which is 
calculated for every block 𝑀 (𝐶 is a scaling constant to 
prevent small values in 𝑊, typical value for 𝐶 = 1000) [4]: 
 

 𝑊 = 𝑆𝑇𝑃(1 − 𝑍𝐶𝑅)𝐶 (2.6) 
 

 The next step is to calculate a threshold to distinguish the 
voiced part. This threshold is calculated using the mean and 
variance of the first 10 blocks, assuming there is no speech 
present in these blocks [4]. 
 

 𝑡 = 𝜇10 + 𝛼𝛿10 (2.7) 
 

 The constant 𝛼 was to be fine-tuned to properly calculate 
the threshold. This constant is not defined and may vary using 
different hardware (e.g. microphone). The value presented 
below proved to be able to make a decent threshold. 
 

 𝛼 = 0.3𝛿10−0.88 (2.8) 
 

 Comparing the threshold to the 𝑊 function will provide the 
𝑉𝐴𝐷 function, also shown in Figure 2.5: 
 

 𝑉𝐴𝐷 = �1 𝑓𝑜𝑟 𝑡 ≤ 𝑊
0 𝑓𝑜𝑟 𝑡 > 𝑊 (2.9) 

 

 
Fig. 2.4: The 𝑀 blocks and threshold         Fig. 2.5: The VAD function 

 

C. Results 
 The above equations are implemented in MATLAB, after 
applying this routine on the raw speech signal (Figure 2.6) it is 
successfully transformed to a new speech signal without any 
pauses and with a fair signal-to-noise ratio (Figure 2.7). 

 
Figure 2.6: The raw speech signal  Figure 2.7: The preprocessed speech signal 

III. FEATURE EXTRACTION 
 After preprocessing the raw speech signals the speech 
features must be extracted to allow further analysis. To gain 
the relevant features of the speech the Mel-frequency 
cepstrum algorithm [5] [6] is used. 

A. Mel-frequency cepstrum 
 The VOICEBOX MATLAB routine 𝑚𝑒𝑙𝑐𝑒𝑝𝑠𝑡.𝑚 is used to 
calculate the Mel-frequency cepstrum coefficients (MFCC’s). 
The MFCC’s are calculated using the following steps: 
 

1. The preprocessed speech is divided in overlapping 
frames. 

2. A Hamming window to avoid spectral leakage is 
used. 

3. A Discrete Fourier Transformation (DFT) is 
performed on the windowed signal. 

4. Perform a Mel bank filtering, changing the scale of 
frequency from linear to mel scale. 

5. Take the logarithm of the mel spectrum. 
6. Take the Discrete Cosine Transformation (DCT) of 

the logarithm. 

 The results of the DCT are the MFCC’s. The first 
coefficient represents the log energy followed by the delta 
coefficients and the delta-delta coefficients, these features are 
capable of  distinguishing speech signals. The fourth 
coefficient is the 0’th order cepstral coefficient. 
 In Figure 3.8 the MFCC’s of a speech signal are shown. 
This figure shows that not all of the coefficients hold relevant 
information, after the first twelve coefficients the MFCC’s 
possess almost no new information. Therefore, to improve the 
calculation speed of the program only the first twelve MFCC’s 
are calculated, as shown in Figure 3.9.  

 
    Figure 3.8: All the MFCC’s             Figure 3.9: The twelve first MFCC’s 

 After extracting the speech features a weighting vector can 
be defined to emphasize certain features which maybe more 
important than others. This allows the speech recognizer to be 
fine-tuned for given tasks. The, trivial, weight vector shown in 
equation 3.1 is assumed, but might be altered to provide better 
results. 
 

 𝑤 = [1 1 1 1 1 1 1 1 1 1 1 1] (3.1) 

B. Results 
 After calculating the coefficients with the Mel-frequency 
cepstrum approach, a set of feature vectors can be constructed. 
In Figure 3.10 a set of feature vectors is displayed, this set was 
created with a total of fifteen speech signals and with the 
weight vector shown in (3.1).  
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Figure 3.10: Complete set of feature vectors 

IV. VECTOR QUANTIZATION 
 When a large data set is provided it is very time consuming 
to considering all the feature vectors. In order to lessen the 
amount of feature vectors, and thus lower the calculation time 
of the program, a form of vector quantization is performed. In 
this project the 𝑘-means clustering approach is used. 

A. K-means clustering 
 The 𝑘-means clustering method is a good and fast 
unsupervised learning algorithm. The algorithm can, using 
only inputs, automatically discover representations and 
structure allowing clustering [7]. The VOICEBOX routine 
𝑘𝑚𝑒𝑎𝑛𝑠.𝑚 is used during the clustering step. 
 The routine starts with choosing 𝑘 random means and 
associating every data point to the closest mean. The centroids 
of these 𝑘 clusters become the new means for the next 
calculation. When the means equal the centroids the algorithm 
has finished, and 𝑘 centroids remain.  

B. Results 
 After applying the 𝑘-means algorithm on all the feature 
vectors, only 𝑘 centroids per word remain. In Figure 4.11 the 
whole set of feature vectors calculated from fifteen speech 
signals (three different words, each spoken five times) is 
shown. After applying the 𝑘-means algorithm with 𝑘 set to 5 a 
dataset of only fifteen vectors remain, this dataset is shown in 
Figure 4.12. 

 
Fig. 4.11: Feature vectors              Fig. 4.12: Clustered feature vectors 

V. CLASSIFICATION 
 The next, and last step, is to recognize a given speech signal 
using the created feature vector dataset. There are a lot of 
methods to do this; recently the most common one being a 
classification using Hidden Markov Models. This method has 
a drawback, the difficulty to implement it in MATLAB. 
Attempts to implement this approach failed, so a different 
classification method had to be found. This other method is 
Dynamic Time Wrapping [8], which was used in speech 
recognizers before the Hidden Markov Models approach 
became popular. A simple Euclidean distance calculation is 
also performed to classify the speech. 

A. Euclidean distance 
 Using the VOICEBOX MATLAB routine 𝑑𝑖𝑠𝑡𝑒𝑢𝑠𝑞.𝑚 the 
distance between two matrices with different size can be 
calculated. Define two matrices with the same number of 
columns but different number of rows 𝑋 and 𝑌 (5.1). Using 
the 𝑑𝑖𝑠𝑡𝑒𝑢𝑠𝑞.𝑚 function the distance matrix 𝑍 (5.2) is 
computed. Each of this matrix now contains the distance 
between one row of 𝑋 and the whole matrix 𝑌. 
 

 
𝑋 = �

𝑥1
𝑥2
�      𝑌 =

⎝

⎛
𝑦1
𝑦2
𝑦3⎠

⎞ (5.1) 

 𝑍 = �
𝑑𝑖𝑠𝑡(𝑦1,𝑥1) 𝑑𝑖𝑠𝑡(𝑦2,𝑥1) 𝑑𝑖𝑠𝑡(𝑦3,𝑥1)
𝑑𝑖𝑠𝑡(𝑦1,𝑥2) 𝑑𝑖𝑠𝑡(𝑦2,𝑥2) 𝑑𝑖𝑠𝑡(𝑦3,𝑥2)� (5.2) 

 

 Finding the smallest values in each column of the distance 
matrix 𝑍 will leave a row vector representing the smallest 
distance from 𝑦1 to any vector of 𝑋, 𝑦2 to any vector of 𝑋 and 
𝑦3 to any vector of 𝑋. Assuming the 𝑘 rows of 𝑋 contain the 𝑘 
centroids of a single word and the rows of 𝑌 contain the 
feature vectors of the input speech a distance can be defined 
(5.3) (5.4). Calculating this distance for every word in the 
dataset, and selecting the smallest distance will give the best 
matching word. 
 

 𝑑𝑖𝑠𝑡_𝑚𝑎𝑡𝑟𝑖𝑥(𝑛) = 𝑑𝑖𝑠𝑡𝑒𝑢𝑠𝑞(𝑑𝑎𝑡𝑎𝑠𝑒𝑡(𝑛),𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑠𝑝𝑒𝑒𝑐ℎ) (5.3) 
 𝑟𝑒𝑠𝑢𝑙𝑡(𝑛) = 𝑠𝑢𝑚(min (𝑑𝑖𝑠𝑡_𝑚𝑎𝑡𝑟𝑖𝑥(𝑛)))/𝑠𝑖𝑧𝑒(𝑑𝑖𝑠𝑡_𝑚𝑎𝑡𝑟𝑖𝑥, 2) (5.4) 
 

B. Dynamic time wrapping 
 A similar classification method is Dynamic Time 
Wrapping. This is a method which also allows comparing 
vector sequences of different lengths. Consider the same two 
vector sequences, 𝑋 and 𝑌 (5.1), in the grid displayed in 
Figure 5.13. 
 
 
 
 
 
 
 
 The DTW algorithm is initiated with start value 
𝐷𝑇𝑊(0,0) = 0, and using the equation below (5.5) a value is 

assigned to all the 
grid points. 

 

 𝐷𝑇𝑊(𝑛,𝑚) = 𝑑𝑖𝑠𝑡�𝑥𝑛  ,𝑦𝑚� + 𝑚𝑖𝑛 �
𝐷𝑇𝑊(𝑛,𝑚 − 1)

𝐷𝑇𝑊(𝑛 − 1,𝑚 − 1)
𝐷𝑇𝑊(𝑛 − 1,𝑚)

 (5.5) 
 

 From each point in the grid an optimal path to the next point 
can be assigned, ending with an optimal path through the 
whole grid. 
 The end value of the algorithm 𝐷𝑇𝑊(𝑁,𝑀) is calculated 
for all the feature vectors. The minimum of these values is 
most likely the spoken word. 

C. Results 
 Even though the two methods mentioned above show 
similarities they don’t always provide the same results. This is 
examined in more detail in the next chapter. 
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VI. RESULTS 
 To determine the functioning of the recognizer it was tested 
thoroughly using different types of speech. During the testing 
several problems occurred using speech recorded on different 
systems with different hardware. The preprocessing algorithm 
proved to be unable to adjust to these different environments. 
Due to these problems this chapter is split into two sections, 
the first section discussing the results using one speaker for 
both the dataset as the input speech. While the second section 
presents the results using four different speakers to create the 
dataset and a fifth speaker to provide the input speech. 

A. Single speaker 
 The recognizer was tested using a dataset consisting of five 
words; each word recorded five times (total of twenty-five 
words). The words are shown below; 
 

 𝑤𝑜𝑟𝑑𝑠 = {′𝑎𝑎𝑛′, ′𝑔𝑒𝑟𝑎𝑙𝑑′, ′𝑠𝑡𝑎𝑟𝑡′, ′𝑠𝑡𝑜𝑝′, ′𝑢𝑖𝑡′) (6.1) 
 

 The weight vector from equation (3.1) and a 𝑘-means 
clustering with 5 centroids were used, and each word was 
tested eight times. Using the Euclidean distance algorithm this 
provided a success rate of 85% (six out of forty words were 
not recognized), and using the DTW algorithm the success 
rate drastically decreased to below 40%. 
 Adjusting the weight vector (6.2) such that the log energy, 
the delta coefficients and the delta-delta coefficients are 
emphasized (these three features vary the most) compared to 
the other coefficients the success rate using the Euclidean 
distance increases to 100% (all forty words were recognized 
correct), and using the DTW algorithm the success rate is a 
mere 40%. 
 

 𝑤 = [1.2 1.2 1.2 1 1 1 1 1 1 1 1 1] (6.2) 

B. Multiple speakers 
 The database for the multiple speakers case consists of a 
total of one hundred words; five words, each recorded five 
times per speaker. The same words (6.1) were used for this 
case. Among the speakers was one female.  
 The first test was performed using the same settings as the 
single speaker case (weight vector (3.1) and 5 centroids). The 
results were, as expected, worse compared to the single 
speaker case with a success rate of 48% (nineteen out of forty 
words were recognized) using Euclidean distance and 45% 
using DTW. 
 Adjusting the weight vector as in the previous section 
provides a better performance, the success rate increased to 
55% (twenty-two out of forty words were recognized) using 
Euclidean distance and 50% using DTW. Applying a 𝑘-means 
with 8 centroids instead of 5 further improves the success rate 
to 65% (twenty-six out of forty words were recognized) using 
Euclidean distance and 60% using DTW. 
 It is remarkable that the word ′𝑎𝑎𝑛′ was only recognized 
once during all tests with multiple speakers. After examining 
the results more thoroughly, some of the speech signals were 
not preprocessed properly. The pauses of six signals (all of 
these signals recorded by the female speaker) were not 
removed. Removing those corrupt speech signals from the 
database unfortunately did not significantly affect the results.   

C. Overview of the results 
 In the two tables below the results of the speech recognizer 
are displayed, where 𝑘 is the number of centroids used in the 
𝑘-means algorithm and 𝑤 is the weight vector from either 
equation (3.1) or (6.2). 
 
Single speaker case 
Method Euclidean distance DTW 
Settings 𝑘 = 5 

 𝑤 = (3.1) 
𝑘 = 5 

 𝑤 = (6.2) 
𝑘 = 5  

𝑤 = (3.1) 
𝑘 = 5  

𝑤 = (6.2) 
Success rate 85% 100% 35% 40% 
 
Multiple speakers case 
Method Euclidean distance 
Settings 𝑘 = 5 𝑤 = (3.1) 𝑘 = 5 𝑤 = (6.2) 𝑘 = 8 𝑤 = (6.2) 
Success rate 48% 55% 65% 
 
Method DTW 
Settings 𝑘 = 5 𝑤 = (3.1) 𝑘 = 5 𝑤 = (6.2) 𝑘 = 8 𝑤 = (6.2) 
Success rate 45% 50% 60% 

 

VII. CONCLUSION 
 The speech recognizer with the Euclidean distance approach 
proved to be reliable for the single speaker case, with a 
success rate from 85% up to 100% after adjusting the weight 
vector. Since the recognizer is fine-tuned for a single speaker, 
these results are not surprising. However, the DTW algorithm 
produced poor results, with a success rate of no higher than 
40%. 
 The performance drops dramatically when the database is 
constructed using different speakers. Four speakers were used 
in this project, three male and one female, and the recognizer 
proved to be unable to handle the higher frequencies of the 
female voice. Moreover the recognizer is also adjusted to 
specific recording hardware, while the four speakers each used 
their own computers and microphones. The success rate using 
different speakers and the Euclidean distance approach varied 
from 48% to 65% after increasing the 𝑘-means centroids and 
adjusting the weight vector. 
 The DTW approach performed better for the second, 
multiple speakers, case compared to the single speaker 
(45%~60%). However it never exceeds the results of the 
Euclidean distance method. It can be concluded that the DTW 
algorithm performs better with significant larger datasets. 
 Looking merely to the results of both the DTW and 
Euclidean distance approach two possible conclusions can be 
made; The Euclidean distance is a far better approach 
compared to the DTW, or the DTW algorithm was somehow 
implemented incorrectly. 

A. Recommendations 
 When improving or expanding the speech recognizer the 
following suggestions might be helpful: 

• Providing a way to change some variables (e.g. the 
centroids in the 𝑘-means algorithm, or the weight 
vector) using the GUI makes it easier to adjust the 
program for specific situations.  

• Using an adaptive approach for the preprocessing 
algorithm to further reduce the noise, and to be able 
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to set a proper threshold regardless of the input 
speech (male/female and different hardware).  

• Implementing a Hidden Markov Model approach 
instead of the Dynamic Time Wrapping classification 
would most likely improve the results of the speech 
recognizer. 

• Programming the speech recognizer in another 
environment (e.g. C code) will not only allow a 
standalone executable, but will also improve the 
calculation speed of the recognizer. 

• Recording a large database, with a high amount of 
different speakers will assure a better performance of 
the speech recognizer. 
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