
TU/e Department of Electrical Engineering 8/5/2012

1

Abstract—This report describes the development of a Dynamic

Time Wrapping based speech recognition module. The
recognition module roughly consists of four separate modules;
preprocessing, feature extraction, clustering and classification.
The preprocessing module prepares the speech signals for further
analysis by removing pauses and increasing the signal-to-noise
ratio. After preprocessing the features of the signal will be
extracted using a Mel-frequency cepstrum approach, these
features are then clustered using a k-means algorithm to produce
relevant centroids. In the last module, classification, the Dynamic
Time Wrapping method is used to recognize the speech signal.
The recognizer’s performance ranges from 35% to 100% heavily
depending on the algorithm used and the training dataset. The
module is developed in MATLAB and is easy to use due to the
GUI (Graphical User Interface).

Index Terms—Classification, clustering, dynamic time
wrapping, feature extraction, mel-frequency cepstrum, speech
recognizer.

I. INTRODUCTION
peech recognition has become more and more applied in
the recent years. Phones, tablets, navigation systems,
gaming platforms and cars are a few examples of devices

which can include speech recognition. Since this is a hands
free way to communicate with a device it is not only
convenient, but it can also contribute to the safety of its user.
For example, while driving a car, switching the radio or the
navigator’s destination will distract the driver. However, when
a speech recognition module is implemented to deal with these
actions the driver barely loses focus.
 Besides the fact that speech recognition is hands free, it is
also often a faster and easier way of communication with a
device. For example, when calling a friend with your phone
pronouncing his name is a lot faster than looking for his
contact information or typing his number. When using speech
recognition for the applications mentioned above it is very
important that the recognizer is reliable; when the program
fails to recognize the speech correctly too often the user will
lose interest in the speech recognition feature. Current popular
speech recognizers are for example Apple’s SIRI for the
iPhones and Google’s Voice Search for the Google Chrome
browser.
 The goal of this research is to gain knowledge on speech
recognition and to apply this knowledge in order to build a

reliable isolated word1 speech recognizer. This isolated word
recognizer will be developed to serve as a remote controller
for a device (e.g. a robot) using single worded commands like
start and stop. During this project three scripts of the unofficial
MATLAB toolbox VOICEBOX [1] were used; 𝑚𝑒𝑙𝑐𝑒𝑝𝑠𝑡.𝑚,
𝑘𝑚𝑒𝑎𝑛𝑠.𝑚 and 𝑑𝑖𝑠𝑡𝑒𝑢𝑠𝑞.𝑚 to build the speech recognizer.
To develop a speech recognizer for this purpose some unique
design decisions had to be made. Since the recognizer only has
to recognize a given amount of isolated words, training on
these specific words will be the most effective approach.
Besides that, the recognizer should be able to operate in real
time; the calculation speed of the program shouldn’t be too
long. Keeping those requirements in mind, the following
decisions were made during the development process, which
led to the final result;

• The implemented preprocessing algorithm has been
adjusted to the specific hardware and situation of the
developer.

• Only the first, and most important, twelve MFCC,
were used for recognizing the speech, to lower the
calculation speed of the program.

• A weight vector has been applied to emphasize
certain features (e.g. boost the important features of
specific speech and lower the features containing a
low frequency noise).

• Vector Quantization was applied (𝑘-means) to reduce
the amount of feature vectors and thus the calculation
speed.

• Two different classification algorithms were
implemented to perform the recognition.

• The recognizer is has been built with a GUI
(Graphical User Interface), making it easier to
recognize speech and create a training set consisting
of your own speech.

 A graphical overview of the speech recognizer is displayed
in appendix A, and a guide on how to use the model is
presented in appendix B.

The outline of this report is as follows;
Chapter 2: Preprocessing
 A crucial step to building a proper functioning speech
recognizer is preprocessing the speech signals. Without decent

1 An isolated word speech recognizer is only capable of recognizing single,

isolated, words.

Speech Recognition using a Dynamic Time
Wrapping approach

G.S. Drenthen, Member, IEEE

S

TU/e Department of Electrical Engineering 8/5/2012

2

preprocessed speech the recognizer is doomed to fail. Noise
reduction and voice detection are the main topics discussed in
this chapter.
Chapter 3: Feature Extraction
 To recognize speech certain features must be compared. For
the extraction of these features the Mel-frequency cepstrum
algorithm is used. The extraction using this algorithm is
discussed in this chapter.
Chapter 4: Vector Quantization
 The amount of feature vectors increases drastically when
using a larger speech dataset. Comparing all these vectors is
too time-consuming, so the dataset has to be compressed. This
chapter describes this compressing using a 𝑘-means clustering
method.
Chapter 5: Classification
 After building a dataset consisting of a reduced number of
feature vectors, these vectors can be compared to the feature
vectors of the input speech using the Dynamic Time Wrapping
algorithm.
Chapter 6: Results
 The results will be discussed in this chapter, where two
situations are distinguished; All the speech is recorded by the
same speaker and the training set is recorded by four different
speakers while the input speech is recorded by a fifth.
Chapter 7: Conclusions
 In this final chapter the conclusions are presented.
Furthermore the recommendations on further use of the
module are presented in this chapter.

II. PREPROCESSING
 In this chapter the preprocessing of speech signals will be
discussed. Preprocessing is a crucial part of the speech
recognition module, it involves improving the signal-to-noise
ratio and detection of voice. After preprocessing a raw speech
signal, there should remain a signal with a fair signal-to-noise
ratio and without any pauses. After preprocessing the speech
features can be extracted. If the preprocessing is performed
incorrect or insufficient the speech features will not
correspond to the speech and the recognition will most likely
fail.

A. Pre-emphasis filtering
 The first step performed to preprocess a raw speech signal
is applying a pre-emphasis filter. This filter will improve the
signal-to-noise ratio by boosting the higher frequencies of the
signal with respect to the lower frequencies [2], removing the
adverse effects caused by recording the speech. A typical pre-
emphasis filter is the high pass filter shown below:

 𝐻(𝓏) = 1 − 𝑎𝓏−1 (2.1)

 Typical values for 𝑎 are from 0.9 to 1.0, to find the best
possible 𝑎 different values have been used, and 𝑎 = 0.98
proved to provide the best results. Giving the following pre-
emphasis filter:

 𝐻(𝓏) = 1 − 0.98𝓏−1 (2.2)

 The magnitude and unwrapped phase of this filter are
shown below, in Figure 2.1.

Fig. 2.1: Visual representation of the pre-emphasis filter

 Applying this filter on a raw speech signal will provide a
‘smoother’ speech signal, listening to both signals one can
clearly observe that the filtered signal includes less noise. In
Figures 2.2 and 2.3 a raw speech signal and its filtered version
are shown in the time domain.

Fig. 2.2: Raw speech signal Fig. 2.3: Filtered speech signal

B. Voice activation detection
 The next step in the preprocessing is to detect speech, and
separate it from pauses. After distinguishing the speech from
the pauses, a new signal without these pauses can be
constructed. A speech signal roughly consist of three parts;
voiced/unvoiced/silence where the voiced part is desired,
while the unvoiced (noisy) and silence part must be removed.
Unlike unvoiced and silence parts, the voiced part can be
considered periodic over short-time periods due to the periodic
vibration of vocal cords [3]. Dividing the speech into 𝑀
blocks of length 𝐿 (20 𝑚𝑠) allows the speech to be stationary
and periodic in each block (Figure 2.4).
 The most important features for determining the voiced part
are the short-term energy and the zero-crossing rate [4].
Voiced sound consists of a large amount of energy compared
to unvoiced sound, and silence has no energy. Thus the short-
term energy will increase when speech is present and is a
useful tool to detect speech.

 𝑆𝑇𝐸 = � 𝑠(𝑛)2
𝑀

𝑛=𝑚−𝐿+1

 (2.3)

 Since the only difference between the short-term energy and
the short-term power is a scaling factor of 1/𝐿 the short-term
power will also increase when speech is present.

 𝑆𝑇𝑃 =
1
𝐿

� 𝑠(𝑛)2
𝑀

𝑛=𝑚−𝐿+1

 (2.4)

 The zero-crossing rate is the rate at which the speech signal
crosses the 𝑥 = 0 axis. The short-term zero-crossing rate can

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-40

-20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

0 0.5 1 1.5 2
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time [s]

am
pl

itu
de

Original signal

0 0.5 1 1.5 2
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Filterd signal

time [s]

am
pl

itu
de

original
filtered

TU/e Department of Electrical Engineering 8/5/2012

3

be calculated for every block 𝑀, and this rate appears to be
larger during the unvoiced part.

 𝑍𝐶𝑅 =
1
𝐿

� �
𝑠𝑔𝑛�𝑠(𝑛)� − 𝑠𝑔𝑛(𝑠(𝑛 − 1))

2 �
𝑀

𝑛=𝑚−𝐿+1

 (2.5)

 Combining both the short-term power and the short-term
zero-crossing rate will provide the following formula, which is
calculated for every block 𝑀 (𝐶 is a scaling constant to
prevent small values in 𝑊, typical value for 𝐶 = 1000) [4]:

 𝑊 = 𝑆𝑇𝑃(1 − 𝑍𝐶𝑅)𝐶 (2.6)

 The next step is to calculate a threshold to distinguish the
voiced part. This threshold is calculated using the mean and
variance of the first 10 blocks, assuming there is no speech
present in these blocks [4].

 𝑡 = 𝜇10 + 𝛼𝛿10 (2.7)

 The constant 𝛼 was to be fine-tuned to properly calculate
the threshold. This constant is not defined and may vary using
different hardware (e.g. microphone). The value presented
below proved to be able to make a decent threshold.

 𝛼 = 0.3𝛿10−0.88 (2.8)

 Comparing the threshold to the 𝑊 function will provide the
𝑉𝐴𝐷 function, also shown in Figure 2.5:

 𝑉𝐴𝐷 = �1 𝑓𝑜𝑟 𝑡 ≤ 𝑊
0 𝑓𝑜𝑟 𝑡 > 𝑊 (2.9)

Fig. 2.4: The 𝑀 blocks and threshold Fig. 2.5: The VAD function

C. Results
 The above equations are implemented in MATLAB, after
applying this routine on the raw speech signal (Figure 2.6) it is
successfully transformed to a new speech signal without any
pauses and with a fair signal-to-noise ratio (Figure 2.7).

Figure 2.6: The raw speech signal Figure 2.7: The preprocessed speech signal

III. FEATURE EXTRACTION
 After preprocessing the raw speech signals the speech
features must be extracted to allow further analysis. To gain
the relevant features of the speech the Mel-frequency
cepstrum algorithm [5] [6] is used.

A. Mel-frequency cepstrum
 The VOICEBOX MATLAB routine 𝑚𝑒𝑙𝑐𝑒𝑝𝑠𝑡.𝑚 is used to
calculate the Mel-frequency cepstrum coefficients (MFCC’s).
The MFCC’s are calculated using the following steps:

1. The preprocessed speech is divided in overlapping
frames.

2. A Hamming window to avoid spectral leakage is
used.

3. A Discrete Fourier Transformation (DFT) is
performed on the windowed signal.

4. Perform a Mel bank filtering, changing the scale of
frequency from linear to mel scale.

5. Take the logarithm of the mel spectrum.
6. Take the Discrete Cosine Transformation (DCT) of

the logarithm.

 The results of the DCT are the MFCC’s. The first
coefficient represents the log energy followed by the delta
coefficients and the delta-delta coefficients, these features are
capable of distinguishing speech signals. The fourth
coefficient is the 0’th order cepstral coefficient.
 In Figure 3.8 the MFCC’s of a speech signal are shown.
This figure shows that not all of the coefficients hold relevant
information, after the first twelve coefficients the MFCC’s
possess almost no new information. Therefore, to improve the
calculation speed of the program only the first twelve MFCC’s
are calculated, as shown in Figure 3.9.

 Figure 3.8: All the MFCC’s Figure 3.9: The twelve first MFCC’s

 After extracting the speech features a weighting vector can
be defined to emphasize certain features which maybe more
important than others. This allows the speech recognizer to be
fine-tuned for given tasks. The, trivial, weight vector shown in
equation 3.1 is assumed, but might be altered to provide better
results.

 𝑤 = [1 1 1 1 1 1 1 1 1 1 1 1] (3.1)

B. Results
 After calculating the coefficients with the Mel-frequency
cepstrum approach, a set of feature vectors can be constructed.
In Figure 3.10 a set of feature vectors is displayed, this set was
created with a total of fifteen speech signals and with the
weight vector shown in (3.1).

Filterd signal blocks

time [s]

am
pl

itu
de

0 0.5 1 1.5 2
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
original
filtered

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
VAD

time [s]

am
pl

itu
de

0 0.5 1 1.5 2
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time [s]

am
pl

itu
de

Original signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Preprocessed speech signal

time [s]

am
pl

itu
de

Time (s)

M
el

-c
ep

st
ru

m
 c

oe
ffi

ci
en

t

0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

35

-10

-8

-6

-4

-2

0

2

Time (s)

M
el

-c
ep

st
ru

m
 c

oe
ffi

ci
en

t

0.1 0.2 0.3 0.4 0.5

0

2

4

6

8

10

-10

-8

-6

-4

-2

0

2

TU/e Department of Electrical Engineering 8/5/2012

4

Figure 3.10: Complete set of feature vectors

IV. VECTOR QUANTIZATION
 When a large data set is provided it is very time consuming
to considering all the feature vectors. In order to lessen the
amount of feature vectors, and thus lower the calculation time
of the program, a form of vector quantization is performed. In
this project the 𝑘-means clustering approach is used.

A. K-means clustering
 The 𝑘-means clustering method is a good and fast
unsupervised learning algorithm. The algorithm can, using
only inputs, automatically discover representations and
structure allowing clustering [7]. The VOICEBOX routine
𝑘𝑚𝑒𝑎𝑛𝑠.𝑚 is used during the clustering step.
 The routine starts with choosing 𝑘 random means and
associating every data point to the closest mean. The centroids
of these 𝑘 clusters become the new means for the next
calculation. When the means equal the centroids the algorithm
has finished, and 𝑘 centroids remain.

B. Results
 After applying the 𝑘-means algorithm on all the feature
vectors, only 𝑘 centroids per word remain. In Figure 4.11 the
whole set of feature vectors calculated from fifteen speech
signals (three different words, each spoken five times) is
shown. After applying the 𝑘-means algorithm with 𝑘 set to 5 a
dataset of only fifteen vectors remain, this dataset is shown in
Figure 4.12.

Fig. 4.11: Feature vectors Fig. 4.12: Clustered feature vectors

V. CLASSIFICATION
 The next, and last step, is to recognize a given speech signal
using the created feature vector dataset. There are a lot of
methods to do this; recently the most common one being a
classification using Hidden Markov Models. This method has
a drawback, the difficulty to implement it in MATLAB.
Attempts to implement this approach failed, so a different
classification method had to be found. This other method is
Dynamic Time Wrapping [8], which was used in speech
recognizers before the Hidden Markov Models approach
became popular. A simple Euclidean distance calculation is
also performed to classify the speech.

A. Euclidean distance
 Using the VOICEBOX MATLAB routine 𝑑𝑖𝑠𝑡𝑒𝑢𝑠𝑞.𝑚 the
distance between two matrices with different size can be
calculated. Define two matrices with the same number of
columns but different number of rows 𝑋 and 𝑌 (5.1). Using
the 𝑑𝑖𝑠𝑡𝑒𝑢𝑠𝑞.𝑚 function the distance matrix 𝑍 (5.2) is
computed. Each of this matrix now contains the distance
between one row of 𝑋 and the whole matrix 𝑌.

𝑋 = �

𝑥1
𝑥2
� 𝑌 =

⎝

⎛
𝑦1
𝑦2
𝑦3⎠

⎞ (5.1)

 𝑍 = �
𝑑𝑖𝑠𝑡(𝑦1,𝑥1) 𝑑𝑖𝑠𝑡(𝑦2,𝑥1) 𝑑𝑖𝑠𝑡(𝑦3,𝑥1)
𝑑𝑖𝑠𝑡(𝑦1,𝑥2) 𝑑𝑖𝑠𝑡(𝑦2,𝑥2) 𝑑𝑖𝑠𝑡(𝑦3,𝑥2)� (5.2)

 Finding the smallest values in each column of the distance
matrix 𝑍 will leave a row vector representing the smallest
distance from 𝑦1 to any vector of 𝑋, 𝑦2 to any vector of 𝑋 and
𝑦3 to any vector of 𝑋. Assuming the 𝑘 rows of 𝑋 contain the 𝑘
centroids of a single word and the rows of 𝑌 contain the
feature vectors of the input speech a distance can be defined
(5.3) (5.4). Calculating this distance for every word in the
dataset, and selecting the smallest distance will give the best
matching word.

 𝑑𝑖𝑠𝑡_𝑚𝑎𝑡𝑟𝑖𝑥(𝑛) = 𝑑𝑖𝑠𝑡𝑒𝑢𝑠𝑞(𝑑𝑎𝑡𝑎𝑠𝑒𝑡(𝑛),𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑠𝑝𝑒𝑒𝑐ℎ) (5.3)
 𝑟𝑒𝑠𝑢𝑙𝑡(𝑛) = 𝑠𝑢𝑚(min (𝑑𝑖𝑠𝑡_𝑚𝑎𝑡𝑟𝑖𝑥(𝑛)))/𝑠𝑖𝑧𝑒(𝑑𝑖𝑠𝑡_𝑚𝑎𝑡𝑟𝑖𝑥, 2) (5.4)

B. Dynamic time wrapping
 A similar classification method is Dynamic Time
Wrapping. This is a method which also allows comparing
vector sequences of different lengths. Consider the same two
vector sequences, 𝑋 and 𝑌 (5.1), in the grid displayed in
Figure 5.13.

 The DTW algorithm is initiated with start value
𝐷𝑇𝑊(0,0) = 0, and using the equation below (5.5) a value is

assigned to all the
grid points.

 𝐷𝑇𝑊(𝑛,𝑚) = 𝑑𝑖𝑠𝑡�𝑥𝑛 ,𝑦𝑚� + 𝑚𝑖𝑛 �
𝐷𝑇𝑊(𝑛,𝑚 − 1)

𝐷𝑇𝑊(𝑛 − 1,𝑚 − 1)
𝐷𝑇𝑊(𝑛 − 1,𝑚)

 (5.5)

 From each point in the grid an optimal path to the next point
can be assigned, ending with an optimal path through the
whole grid.
 The end value of the algorithm 𝐷𝑇𝑊(𝑁,𝑀) is calculated
for all the feature vectors. The minimum of these values is
most likely the spoken word.

C. Results
 Even though the two methods mentioned above show
similarities they don’t always provide the same results. This is
examined in more detail in the next chapter.

0 2 4 6 8 10 12
-15

-10

-5

0

5

10
Feature vectors

coefficients

A
m

pl
itu

de

0 2 4 6 8 10 12
-15

-10

-5

0

5

10
Feature vectors

coefficients

A
m

pl
itu

de

0 2 4 6 8 10 12
-12

-10

-8

-6

-4

-2

0

2

4

6
Feature vectors

coefficients

A
m

pl
itu

de

Fig. 5.13: Grid with optimal path

𝑥2 o o o
𝑥1 o o o
 𝑦1 𝑦2 𝑦3

TU/e Department of Electrical Engineering 8/5/2012

5

VI. RESULTS
 To determine the functioning of the recognizer it was tested
thoroughly using different types of speech. During the testing
several problems occurred using speech recorded on different
systems with different hardware. The preprocessing algorithm
proved to be unable to adjust to these different environments.
Due to these problems this chapter is split into two sections,
the first section discussing the results using one speaker for
both the dataset as the input speech. While the second section
presents the results using four different speakers to create the
dataset and a fifth speaker to provide the input speech.

A. Single speaker
 The recognizer was tested using a dataset consisting of five
words; each word recorded five times (total of twenty-five
words). The words are shown below;

 𝑤𝑜𝑟𝑑𝑠 = {′𝑎𝑎𝑛′, ′𝑔𝑒𝑟𝑎𝑙𝑑′, ′𝑠𝑡𝑎𝑟𝑡′, ′𝑠𝑡𝑜𝑝′, ′𝑢𝑖𝑡′) (6.1)

 The weight vector from equation (3.1) and a 𝑘-means
clustering with 5 centroids were used, and each word was
tested eight times. Using the Euclidean distance algorithm this
provided a success rate of 85% (six out of forty words were
not recognized), and using the DTW algorithm the success
rate drastically decreased to below 40%.
 Adjusting the weight vector (6.2) such that the log energy,
the delta coefficients and the delta-delta coefficients are
emphasized (these three features vary the most) compared to
the other coefficients the success rate using the Euclidean
distance increases to 100% (all forty words were recognized
correct), and using the DTW algorithm the success rate is a
mere 40%.

 𝑤 = [1.2 1.2 1.2 1 1 1 1 1 1 1 1 1] (6.2)

B. Multiple speakers
 The database for the multiple speakers case consists of a
total of one hundred words; five words, each recorded five
times per speaker. The same words (6.1) were used for this
case. Among the speakers was one female.
 The first test was performed using the same settings as the
single speaker case (weight vector (3.1) and 5 centroids). The
results were, as expected, worse compared to the single
speaker case with a success rate of 48% (nineteen out of forty
words were recognized) using Euclidean distance and 45%
using DTW.
 Adjusting the weight vector as in the previous section
provides a better performance, the success rate increased to
55% (twenty-two out of forty words were recognized) using
Euclidean distance and 50% using DTW. Applying a 𝑘-means
with 8 centroids instead of 5 further improves the success rate
to 65% (twenty-six out of forty words were recognized) using
Euclidean distance and 60% using DTW.
 It is remarkable that the word ′𝑎𝑎𝑛′ was only recognized
once during all tests with multiple speakers. After examining
the results more thoroughly, some of the speech signals were
not preprocessed properly. The pauses of six signals (all of
these signals recorded by the female speaker) were not
removed. Removing those corrupt speech signals from the
database unfortunately did not significantly affect the results.

C. Overview of the results
 In the two tables below the results of the speech recognizer
are displayed, where 𝑘 is the number of centroids used in the
𝑘-means algorithm and 𝑤 is the weight vector from either
equation (3.1) or (6.2).

Single speaker case
Method Euclidean distance DTW
Settings 𝑘 = 5

 𝑤 = (3.1)
𝑘 = 5

 𝑤 = (6.2)
𝑘 = 5

𝑤 = (3.1)
𝑘 = 5

𝑤 = (6.2)
Success rate 85% 100% 35% 40%

Multiple speakers case
Method Euclidean distance
Settings 𝑘 = 5 𝑤 = (3.1) 𝑘 = 5 𝑤 = (6.2) 𝑘 = 8 𝑤 = (6.2)
Success rate 48% 55% 65%

Method DTW
Settings 𝑘 = 5 𝑤 = (3.1) 𝑘 = 5 𝑤 = (6.2) 𝑘 = 8 𝑤 = (6.2)
Success rate 45% 50% 60%

VII. CONCLUSION
 The speech recognizer with the Euclidean distance approach
proved to be reliable for the single speaker case, with a
success rate from 85% up to 100% after adjusting the weight
vector. Since the recognizer is fine-tuned for a single speaker,
these results are not surprising. However, the DTW algorithm
produced poor results, with a success rate of no higher than
40%.
 The performance drops dramatically when the database is
constructed using different speakers. Four speakers were used
in this project, three male and one female, and the recognizer
proved to be unable to handle the higher frequencies of the
female voice. Moreover the recognizer is also adjusted to
specific recording hardware, while the four speakers each used
their own computers and microphones. The success rate using
different speakers and the Euclidean distance approach varied
from 48% to 65% after increasing the 𝑘-means centroids and
adjusting the weight vector.
 The DTW approach performed better for the second,
multiple speakers, case compared to the single speaker
(45%~60%). However it never exceeds the results of the
Euclidean distance method. It can be concluded that the DTW
algorithm performs better with significant larger datasets.
 Looking merely to the results of both the DTW and
Euclidean distance approach two possible conclusions can be
made; The Euclidean distance is a far better approach
compared to the DTW, or the DTW algorithm was somehow
implemented incorrectly.

A. Recommendations
 When improving or expanding the speech recognizer the
following suggestions might be helpful:

• Providing a way to change some variables (e.g. the
centroids in the 𝑘-means algorithm, or the weight
vector) using the GUI makes it easier to adjust the
program for specific situations.

• Using an adaptive approach for the preprocessing
algorithm to further reduce the noise, and to be able

TU/e Department of Electrical Engineering 8/5/2012

6

to set a proper threshold regardless of the input
speech (male/female and different hardware).

• Implementing a Hidden Markov Model approach
instead of the Dynamic Time Wrapping classification
would most likely improve the results of the speech
recognizer.

• Programming the speech recognizer in another
environment (e.g. C code) will not only allow a
standalone executable, but will also improve the
calculation speed of the recognizer.

• Recording a large database, with a high amount of
different speakers will assure a better performance of
the speech recognizer.

REFERENCES
[1] M. BROOKS, "Imperial College London Department of Electrical and

Electronic Engineering," [Online]. Available:
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html. [Accessed
21 July 2012].

[2] H. BEIGI, Fundamentals of Speaker Recognition, New York: Springer,
2011.

[3] L. RABINER and B.-H. JUANG, Fundamentals of speech recognition,
Englewood Cliffs: PTR Prentice Hall, 1993.

[4] M. E. M. NILSSON, "Speech Recognition Using Hidden Markov
Model," Blekinge Institute of Technology, Ronneby, 2002.

[5] M. OH and H.-M. PARK, "Preprocessing of Independant Vector
Analysis Using Feed-Forward Network for Robust Speech Recognition,"
Berlin, 2011.

[6] S. RAVINDRAN, C. DEMIROGULU and D. ANDERSON, "Speech
recognition using filter-bank features," Atlanta, Nov. 2003.

[7] B. d. VRIES, "Technical University Eindhoven Adaptive Information
Processing," [Online]. Available:
http://www.sps.ele.tue.nl/members/B.Vries/teaching/5mb20/index.html.
[Accessed 21 July 2012].

[8] P. N. M. LAMA, "Speech Recognition with Dynamc Time Wrapping
using MATLAB," SPRING, 2010.

[9] J. MCAULEY, J. MING, D. STEWART and P. HANNA, "Subband
Correlation and Robust Speech Recognition," Washington, Sept. 2005.

	I. INTRODUCTION
	II. Preprocessing
	A. Pre-emphasis filtering
	B. Voice activation detection
	C. Results

	III. Feature extraction
	A. Mel-frequency cepstrum
	B. Results

	IV. Vector quantization
	A. K-means clustering
	B. Results

	V. Classification
	A. Euclidean distance
	B. Dynamic time wrapping
	C. Results

	VI. Results
	A. Single speaker
	C. Overview of the results

	VII. Conclusion
	A. Recommendations

